Final Exam for Physics 120A (closed book) Thursday 12 June 2014; 8:00 - 11:00 AM

Problem 1.

For each of the circuits (a - d) below, find the indicated voltage (v) or current (i) for all t > 0. Time "t" is in seconds.

Problem 2.

The circuit below is called a differential amplifier.

(a) Using the ideal Op Amp model (infinite open loop gain, infinite input resistance, zero output resistance) derive an expression for the output voltage v_0 in terms of the input voltages v_1 and v_2 and the resistances R_1 , R_2 , R_3 , and R_4 .

(b) Does connecting a load resistor R_L between the output and ground change the previous expression for v_0 ? Why?

(c) Let $v_1 = v_2$ and $R_1 = 1$ k Ω , $R_2 = 30$ k Ω , and $R_3 = 1.5$ k Ω . Find R_4 so that $v_0 = 0$.

(d) Let $v_2 = 0$ and $v_1 = 1$ Volt. Using the preceding resistor values, including that computed for *R*4 in part (c), find v_0 .

Problem 3.

(a) In the circuit below, assume that the diode can be modeled as an ideal diode. Plot the waveform $v_o(t)$ assuming a triangle wave input for $v_{i(t)}$.

(b) Write an expression for $v_o(t)$ in terms of $v_{i}(t)$ and *R*.

(c) If the triangle wave has a peak amplitude of only 2 Volts, a more accurate diode model must be used. Plot the waveform for $v_o(t)$ assuming that the diode is modeled using an ideal diode in series with a 0.6-Volt source.

(d) Write an expression for $v_o(t)$ in terms of $v_i(t)$ and *R* assuming that the diode is modeled using an ideal diode in series with a 0.6-Volt source.

Problem 4.

Consider the common emitter BJT amplifier shown below. The input voltage comprises the sum of a DC bias voltage, $V_i = 0.7$ Volts, and a sinusoid of the form $v_i(t) = 0.001 \sin(\omega t)$ Volts.

In your analysis of the circuit, you may assume that the amplitude of $v_i(t)$ is very small compared to V_i , and that the BJT always operates in its active region. The figure also shows a small-signal model for the BJT in its active region.

Let the output voltage comprise an operating-point voltage V_0 and a small-signal response term $v_0(t)$.

- (a) Determine the operating-point voltage V_0 for the input bias of $V_1 = 0.7$ Volts.
- (b) Draw the small-signal equivalent circuit for the amplifier?
- (c) Determine the small-signal gain of the amplifier?
- (d) What is the small-signal response $v_o(t)$ given the small signal input $v_i(t)$?

Fini!